慢性肾病基因诊断模型构建与验证

2025-05-13 MedSci xAi 发表于广东省
本文详细解析慢性肾病(CKD)基因诊断模型的构建过程,基于GEO数据库的GSE137570数据集,采用WGCNA和随机森林算法筛选核心基因集,并通过ROC曲线验证其诊断性能。研究还利用Cox回归、LASSO回归和逻辑回归构建了CKD进展风险预测模型,并在小鼠UUO模型中验证了转录组分析的可靠性。

We identified the GSE137570 dataset from the GEO database, which contains two subsets related to the occurrence and progression of CKD. Using WGCNA and random forest algorithms, we screened and constructed three core gene sets of different sizes based on the whole-genome transcriptome and differential gene expression profiles. The diagnostic performance of the gene set scores was externally validated using ROC curves in GSE66494 and GSE180394, and their predictive performance for CKD progression was evaluated in GSE60861. We utilized Cox regression, LASSO regression, and logistic regression to build diagnostic and progression risk prediction models. Finally, the reliability of human CKD transcriptomic analysis and the feasibility of functional studies were validated in a mouse UUO model.

AI
与梅斯小智对话

观星者应用

MedSearch MedSearch 医路规划 医路规划 数据挖掘 数据挖掘 文献综述 文献综述 文稿评审 文稿评审 课题设计 课题设计

科研工具

AI疑难疾病诊断 AI疑难疾病诊断 AI调研 AI调研 AI选刊 AI选刊 ICD-11智能查询 ICD-11智能查询 PUBMED文献推荐 PUBMED文献推荐 专业翻译 专业翻译 体检报告解读 体检报告解读 化验单智能识别 化验单智能识别 文本润色 文本润色 文献综述创作 文献综述创作 智能纠错 智能纠错 海外邮件智能回复 海外邮件智能回复 皮肤病自测 皮肤病自测 肌肤女神 肌肤女神 论文大纲 论文大纲 论文选题 论文选题