基于核心基因集的CKD分类与进展预测模型研究

2025-05-13 MedSci xAi 发表于广东省
本文基于WGCNA和随机森林算法构建慢性肾脏病(CKD)核心基因集,通过Cox回归、LASSO回归和Logistic回归分析开发CKD进展预测模型,并验证小鼠UUO模型与人类CKD转录组学的可靠性,为CKD诊断与预测提供有效工具。
This study constructed core gene sets of varying sizes based on CKD-related transcriptomic datasets using WGCNA and random forest algorithms. It was found that the performance of different gene set scores in the classification diagnosis of CKD varied. By integrating other clinical features, we developed CKD progression prediction models based on Cox regression analysis, LASSO regression analysis, and Logistic regression analysis, clarifying the application value of core gene sets in these predictive models. Through comparisons between the mouse UUO model and human CKD transcriptomics, we validated the reliability of bioinformatics analysis of human CKD datasets and the feasibility of the mouse UUO model for functional studies of CKD-related risk genes. This study provides effective classification and progression risk prediction models for CKD diagnosis and prediction, laying a foundation for research into potential core genes associated with CKD.
AI
与梅斯小智对话

观星者应用

MedSearch MedSearch 医路规划 医路规划 数据挖掘 数据挖掘 文献综述 文献综述 文稿评审 文稿评审 课题设计 课题设计

科研工具

AI疑难疾病诊断 AI疑难疾病诊断 AI调研 AI调研 AI选刊 AI选刊 ICD-11智能查询 ICD-11智能查询 PUBMED文献推荐 PUBMED文献推荐 专业翻译 专业翻译 体检报告解读 体检报告解读 化验单智能识别 化验单智能识别 文本润色 文本润色 文献综述创作 文献综述创作 智能纠错 智能纠错 海外邮件智能回复 海外邮件智能回复 皮肤病自测 皮肤病自测 肌肤女神 肌肤女神 论文大纲 论文大纲 论文选题 论文选题