WGCNA与随机森林在CKD基因研究中的应用

2025-05-13 MedSci xAi 发表于广东省
本文探讨了WGCNA与随机森林算法在慢性肾病(CKD)基因研究中的应用,基于GSE137570数据集,识别了与CKD发生和发展相关的关键基因,并构建了多变量风险预测模型。通过小鼠UUO模型验证了核心基因的诊断价值。

WGCNA was used to cluster genes related to the occurrence and progression of CKD in GSE137570. Combining differential gene analysis, we identified 9 genes positively associated with CKD development and 20 genes negatively associated with CKD development. Using the random forest algorithm, the top 10 significantly important differential genes from the two subsets were selected. This resulted in three gene sets of different sizes: minimal (CCL2, SUCLG1, ACADM), medium (CCL2, GGT6, PCK2, SFXN2, SLC34A3, ALPL, GLTPD2, ACADM, SUCLG1), and maximal (CCL2, MMP7, GGT6, PCK2, SFXN2, SLC34A3, ALPL, GLTPD2, ACADM, SUCLG1). Evaluations of diagnostic performance using different scoring methods revealed that combinations of gene set size and scoring method had varying efficacies. The maximal plaque score achieved a diagnostic performance of 0.767 in GSE66494 and 0.760 in GSE180394. The medium z-score achieved a predictive performance for CKD progression of 0.687 in GSE60861. Cox regression analysis constructed a multivariate risk model with age, creatinine change, and medium z-score as variables. LASSO regression analysis built a multivariate risk prediction model with gender, age, medium z-score, and minimal ssGSEA as variables. Logistic regression analysis included only gender and eGFR before the observation period in the multivariate model. In the mouse UUO model, we found a high degree of similarity between mouse UUO and human CKD in KEGG enrichment, and the core genes related to the occurrence and progression of human CKD remained diagnostically valuable in mice.

AI
与梅斯小智对话

观星者应用

MedSearch MedSearch 医路规划 医路规划 数据挖掘 数据挖掘 文献综述 文献综述 文稿评审 文稿评审 课题设计 课题设计

科研工具

AI疑难疾病诊断 AI疑难疾病诊断 AI调研 AI调研 AI选刊 AI选刊 ICD-11智能查询 ICD-11智能查询 PUBMED文献推荐 PUBMED文献推荐 专业翻译 专业翻译 体检报告解读 体检报告解读 化验单智能识别 化验单智能识别 文本润色 文本润色 文献综述创作 文献综述创作 智能纠错 智能纠错 海外邮件智能回复 海外邮件智能回复 皮肤病自测 皮肤病自测 肌肤女神 肌肤女神 论文大纲 论文大纲 论文选题 论文选题