Cox回归分析在预后数据中的应用

2025-05-13 MedSci xAi 发表于广东省
本文详细解析Cox回归分析在预后数据中的应用,涵盖比例风险假设、多元共线性检测及R包survival的使用方法,提供2025最新指南与实用技巧。
The analysis of prognostic data is commonly performed using the R package "survival" (version 3.3.1) for testing the proportional hazards assumption and conducting Cox regression analysis. A prerequisite for applying Cox regression is that the covariates must satisfy the proportional hazards assumption (P > 0.05). The Variance Inflation Factor (VIF) can be used to assess multicollinearity among variables in the model; generally, a VIF value between 0 and 10 indicates no significant multicollinearity. Cox regression analysis can be applied to both continuous and ordinal variables, with the reference level in ordinal variables serving as the reference category. Variables are included in the multivariate Cox regression analysis if their P-values meet the threshold (P = 0.1).
AI
与梅斯小智对话

观星者应用

MedSearch MedSearch 医路规划 医路规划 数据挖掘 数据挖掘 文献综述 文献综述 文稿评审 文稿评审 课题设计 课题设计

科研工具

AI疑难疾病诊断 AI疑难疾病诊断 AI调研 AI调研 AI选刊 AI选刊 ICD-11智能查询 ICD-11智能查询 PUBMED文献推荐 PUBMED文献推荐 专业翻译 专业翻译 体检报告解读 体检报告解读 化验单智能识别 化验单智能识别 文本润色 文本润色 文献综述创作 文献综述创作 智能纠错 智能纠错 海外邮件智能回复 海外邮件智能回复 皮肤病自测 皮肤病自测 肌肤女神 肌肤女神 论文大纲 论文大纲 论文选题 论文选题